
Question #b8408 - Socratic
The thing to keep in mind here is that nitric acid is a strong acid, which means that it will ionize completely in aqueous solution to produce hydronium cations, H3O+, and nitrate anions, NO− …
Calculating the concentration of excess HCL in E - Socratic
The acid in excess is then titrated with N aOH (aq) of KNOWN concentration....we can thus get back to the concentration or molar quantity of M (OH)2...as it stands the question (and answer) …
How many grams of \text {NH}_4\text {OH} do I need to make
"6.3072 g" >>"Molarity" = "Moles of solute"/"Volume of solution (in litres)" "0.45 M" = "n"/"0.4 L" "n = 0.45 M × 0.4 L = 0.18 mol" You need "0.18 mol" of "NH"_4"OH" Molar mass of "NH"_4"OH" …
Question #18488 - Socratic
The degree of dissociation sf (alpha=0.0158) sf (K_b=2.51xx10^ (-6)color (white) (x)"mol/l") Triethyamine is a weak base and ionises: sf ( (CH_3)_3N+H_2Orightleftharpoons …
Question #6b37a + Example - Socratic
The longer the alkyl chain attached to the hydroxyl head, usually the more basic the conjugate base is (and the less nucleophilic).
Question #71ce2 - Socratic
H^+ + OH^--> H_2O when the acid was added to the resulting solution. The H^+ and OH^- react in a 1:1 ratio. This tells us that the number of moles of H^+ used will be equal to the number of …
Question #e7848 - Socratic
Similarly, OH^- becomes H_2O, indicating a gain of a H^+ ion. So, you can say that NH_4^+ is the acid, and OH^- is the base. Conjugates are basically the "other" term. For every acid, you …
Question #a4a33 - Socratic
The added water to reach "100.00 mL" doesn't change the mols of HCl present, but it does decrease the concentration by a factor of 100//40 = 2.5. Regardless, what matters for …
Question #477c5 - Socratic
On the product side the Carbonic Acid (#H_2CO_3#) is the Conjugate Acid as it is the hydrogen donor to the Conjugate Base (#OH^-#) as it receives the hydrogen ion.
Question #71b91 - Socratic
Since water is in excess, "67.7 g MgO" are needed to produce "98.0 g Mg(OH)"_2. Balanced equation "MgO(s) + H"_2"O(l)"rarr"Mg(OH)"_2("s")" Moles magnesium hydroxide Start with the …