
PyTorch
4 days ago · PyTorch Foundation is the deep learning community home for the open source PyTorch framework and ecosystem.
Learn the Basics — PyTorch Tutorials 2.9.0+cu128 documentation
Learn the Basics || Quickstart || Tensors || Datasets & DataLoaders || Transforms || Build Model || Autograd || Optimization || Save & Load Model Learn the Basics # Created On: Feb 09, 2021 | …
Why do I install pytorch with the names "~orch" and ... - PyTorch …
Jun 20, 2024 · Why do I install pytorch with the names "~orch" and "~-rch" in the site-packages folder? hrdom (dom) June 20, 2024, 11:33am 1 hrdom (dom) June 20, 2024, 12:44pm
torch.utils.data — PyTorch 2.9 documentation
Jun 13, 2025 · torch.utils.data # Created On: Jun 13, 2025 | Last Updated On: Jun 13, 2025 At the heart of PyTorch data loading utility is the torch.utils.data.DataLoader class. It represents a …
torch.randn — PyTorch 2.9 documentation
torch.randn # torch.randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) → Tensor # Returns a tensor filled …
torch.nn — PyTorch 2.9 documentation
torch.nn # Created On: Dec 23, 2016 | Last Updated On: Jul 25, 2025
torch.optim — PyTorch 2.9 documentation
Jun 13, 2025 · torch.optim # Created On: Jun 13, 2025 | Last Updated On: Aug 24, 2025 torch.optim is a package implementing various optimization algorithms. Most commonly used …
PyTorch documentation — PyTorch 2.9 documentation
PyTorch documentation # PyTorch is an optimized tensor library for deep learning using GPUs and CPUs. Features described in this documentation are classified by release status: Stable …
torch.Tensor — PyTorch 2.9 documentation
Dec 23, 2016 · torch.Tensor # Created On: Dec 23, 2016 | Last Updated On: Jun 27, 2025 A torch.Tensor is a multi-dimensional matrix containing elements of a single data type. Please …
torch.nn.functional.interpolate — PyTorch 2.9 documentation
torch.nn.functional.interpolate # torch.nn.functional.interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, …